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I. Phys. A Math Gen. 27 (1994) 116~1178. Rinted in the UK 

Stability analysis of 2 = f y  periodic orbits in a $(Q - zy)' 
potential 

K Jaroensutasinee and G Rowlands 
Department of Physics, University of Warwick, Coventry CV4 7AL, UK 

Received 5 April 1993, in final form 7 October 1993 

Abstract. A combination of analytic and numerical methods is used to show the existence of 
simple stable orbits in the i(Q - xy)* potential. 

1. Introduction 

The spatial confinement of charged particles in spatially non-uniform magnetic fields forms 
the physical basis for mast plasma fusion devices. However, the seemingly simple problem 
of the motion of even a single charged particle in a non-uniform magnetic field has turned out 
to be surprisingly complicated; most particle orbits turn out to be ch t i c .  Thus it is desirable 
to study in depth some simple magnetic configurations so as to obtain a better understanding 
of the physics of particle confinement. One such system is the two-dimensional cusp. This 
is the magnetic field generated hy four shaight line currents symmetrically situated at a large 
distance from the centre, which are parallel to the e axis of a three-dimensional rectangular 
coordinate system. The magnetic field can be defined through a vector potential A of the 
form A = x y k  where k is a unit vector along the z axis. The motion of a charged particle 
moving in such a magnetic field is governed by the Hamiltonian (see Rusbridge 1971) 

(1) H ( x ,  y9 px ,  P Y )  = ;(P: + P,' + (Q - XY)') 

where Q is a positive constant proportional to the particle momentum in the z direction. 
This problem has been discussed by a number of authors. In particular, 

Rusbridge (1971,1977) obtained numerical results for Q < 1 which nowadays would be 
classified as chaotic. Our own numerical results presented later confirm this. The presence 
of chaos leads to particles acquiring large values of x and y which physically correspond to 
the particle making large deviations from the central regions of the magnetic field, and this 
leads to particle loss from a practical containment device. For Q >> 1 an adiabatic invariant 
exists which, if treated as an absolute constant of motion, gives conditions for absolute 
particle confinement. However, as Q approaches unity non-adiabatic effects appear which 
also lead to particle loss. These non-adiabatic effects were first discussed by Howard (1971) 
and in more detail by Cohen etal (1978) (subsequently to be referred to as CRF). A detailed 
analysis of the particle loss quantified in terms of enhanced diffusion is given in Cohen and 
Rowlands (1981). 

It is wodh noting that the special case Q = 0, where we have the potential x2y2,  has 
many other physical applications (Dahlqvist and Russberg 1990, and references therein). It 
has been investigated extensively in order to test the belief that the motion is fully ergodic, 
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which implies that no stable orbits should exist. However, Dahlqvist and Russberg have 
recently shown, using numerical simulations, the existence of at least one stable orbit, and 
so for Q = 0 the system is not fully ergodic (Dahlqvist and Russberg 1990). Our own 
numerical simulations show that the periodic orbit continues to exist for finite Q but only 
for Q -= 0.00002. 

However, with the simple constraint x = &y, it is easily shown that periodic solutions 
exist, and in fact their forms can he studied analytically. We will call such solutions the 
x = &y orbits. These orbits can be expressed in terms of Jacobi elliptic functions. The 
main purpose of this paper is to show that for certain ranges of the parameter Q these orbits 
are stable. 

Linearizing around the x = ky orbits gives rise to two distinct stability equations. 
One equation is a form of Lamss equation with solutions which are periodic and therefore 
stable. The other stability equation falls into two categories depending on the Q value. 
For all values of Q, except Q = 1, it is a type of Hill's equation, namely a homogeneous, 
linear, second-order differential equation with real periodic coefficients. With the usual 
form of Hill's equation, transition of the solution from stable to unstable behaviour is 
studied by varying a parameter (usually the eigenvalue). In contrast, in the present study, 
the period of the periodic term is also changed as the parameter, namely Q, is allowed to 
change. Nevertheless, the study of Hill's equation (Magnus and Winkler 1966) provides 
simple but practical tools to trace the stability transition which are readily extended to 
include our equations. They are the so-called Hill's discriminant and the oscillation theorem. 
Furthermore, the study by Churchill er al (1980) (subsequently to be referred to as CPR) 
ensures that our solutions will change their stability many times as the change in period of 
the periodic term is made, that is as Q is varied. 

We have traced the stability regions of the x = ?cy orbits numerically using the Hill's 
discriminant and find a complicated pattern, as a function of Q, for the existence of stable 
solutions. In particular, as Q + 1, the regions of stability, which are interspersed with 
unstable ones, become smaller and smaller. In fact, because of the error build-up, the 
numerical calculations only show the existence of the first four or five of what turns out to 
be an infinite sequence of stable and unstable regions. The full nature of this complicated 
srructure is revealed by a novel perturbation analysis valid as Q + 1 which is discussed in 
section 5. Though this work was motivated by a problem related to particle confinement in 
fusion devices, the stability of periodic orbits in classical mechanics is important to other 
problems, for example, the relation between classical and quantum mechanical descriptions 
of a system (see, for example, Edmonds 1989). 
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2. Analytic expressions for the I = fy periodic orbits 

From the Hamiltonian (1) we may derive the equations of motion for a charged particle 
moving in the cusp magnetic field configuration 

-= d2y x(Q-xy) 
dt2 

along with the energy conservation equation 

($)'+ (%)'+ (Q - X Y ) ~  = E .  (3) 
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The scaling'property of the Hamiltonian system enables us to study this system with the 
normalized energy ( E  = 1). 

For the sake of convenience. we use the linear transformation 

x + y  q = -  x-Y p = -  
2 2 

to obtain the equations of motion in the form 

-= d2p + p ( Q  - p z  + q2)  dtZ 

It is easy to see that the x = y orbits correspond to the case 
to the case p = 0. 

=Oandthe 

(4) 

(5) 

= -y orbits 

First, we consider the x = y orbits labelled by p(f), for these periodic orbits the 
equations of motion reduce to 

($)'=;((1 - Q2)+2Qp2-p4). 

This differential equation can be integrated in terms of elliptic functions and the solutions 
can be written in the following form: 

When Q < 1 

where kZ (= (Q + 1)/2) is the modulus of the Jacobi elliptic function. The Jacobi elliptic 
function is' a doubly periodic function with pehod of 4K(k2) and 2K(k2) + 2iK(1 - kz) ,  
with K being the complete elliptic integral of the first kind. 

w h e n Q 2 1  

where kZ = 2/(1 + Q )  with period 2K(kz). The Jacobi elliptic function, dn(t), has the 
property that it is always positive. 

what is the significance of the point Q = I? We see from (3) with E = 1 that since the 
kinetic energy must be greater or equal to zero, all orbits must satisfy (Q  - X Y ) ~  6 1. This 
condition allows one to bound the regions in the x, y plane where orbits can exist. Then, 
since the boundaries are given by y = ( Q  f I)/x, we see that when Q > 1, the confinement 
zone is split into two regions. The charged particle cannot jump between these regions. As 
Q decreases, these regions come together and join at Q = 1. For Q < 1, there is just one 
allowable region. Mathematically, the topology of the potential ( Q  - pz)z  when 0 < Q e 1 
and when Q > 1, is different. In general, the potential (Q - p2)' can have two minima. 
These minima are connected when 0 c Q < 1, but are not when Q > 1. In addition, the 
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x = y orbit’at Q = 1 forms a separatrix in the ( x ,  dxldt) phase space. Typical orbits for 
three different values of Q are shown in figure 1. 

Next, we consider the x = -y  orbits labelled by q(r) .  For these orbits, the equations 
of motion reduce to 

K Jaroensutasinee and G Rowlands 

Unlike the x = y case, the x = -y orbits do not exist for Q > 1 because the right-hand 
side of (9) is then always negative. Integrating (9), we obtain the solution 

where k2 = $(l- Q) with period 4K(k2) and 4iK(1 -k2) .  

particle stays there forever, and so we have a trivial fixed point. 
As Q approaches 1, the amplitude of the oscillation goes to zero, which means the 

3. Stability equations 

By l inek ing  around specific x = y 01 x = - y  orbits (G = 0 or = O), the stability 
property of these periodic orbits can be studied. 

First, we linearize about the x = y orbits. That is, we write p ( t )  = j ( t )  + 6p( t )  and 
q(t) = 0 + Sq(f), substitute info (5) and negIect aI1 products of Sp and Sq. The h e a r  
stability equations for Sp(r) are: then, for the case Q < 1 

d2Sp - + (1 + 4k2 - 6k2 sn2(t, k2))Sp = 0 
dt2 

d2Sq - + (-1 + 2k2sn2(t, k2))sq = o 
d r 2  

(11) 

where k2 = (Q + l ) /Z and for the case Q > 1 

d2Sp - + (4 + k2 - 6k2 sn2(s, k2))Sp = 0 
ds2 

d2Sq 2 2  - + (4’ + 2k sn (s. k2))Sq = 0 
ds2 

where s = iJe?Tr and k2 = 2/(1+ Q). 
For the special case Q = 1 

9 +(-1+6sech2(t))Sp=0 
dt2 

d2Sq 
dt2 

(13) 

- + (1 - 2se~h’(t))Sq = 0. 

All the above stability equations for Sp(t)  are of the form of Lames equation 

y’’ + (A - m(m + l ) ~ s n 2 ( x ,  k*))y = o (14) 
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Figure 1. Typical orbits in the 
x-y plane for three different values 
of Q. The broken curves outline 
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with m = 2 and A = 1 + 4k2 and 4 + k2. For this combination of parameters analytic 
solutions are known (Whittaker and Watson 1963). We have 
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Sp(r) = sn(r,kZ)dn(t, k') for Q < 1 

~ p ( s )  = sn(s, k2) cn(s, k2) for Q > 1 (15) 

Sp(t) = tanh(t) sech(t) for Q = 1. 
It is easy to see that the solutions for the cases Q < 1 and Q > 1 are periodic, and so no 
instability arises in p-space. Similarly, even the solutions for Q = 1 are bounded, although 
not periodic. Hence, the x = y orbit is stable in p-space for all values of Q .  In fact since 
Sp is seen to be proportional to dp/dr, one can absorb Sp into j as a simple phase factor. 

The stability equations for Sq are very close in form to La"s  equation, but no integer 
values of m exist to fit these equations to the form of Lamb's equation as given by (14). 
According to the study by CPR and Magnus and Winkler (1966). stability equations of 
such form can have both stable and unstable solutions and have the following interesting 
properties: 
(i) They have an infinite number of stability and instability intervals in k-space which 

implies Q-space, since k is an explicit function of Q. 
(ii) The stability boundaries are determined by the equation lA(k2)1 = 2, where A@) is 

Hill's discriminant. 
(iii)Let the period of sn2(s, k2) be T(k2). If A@) = 2 at k = kl, there exists a periodic 

solution of period T(kT), and if A&') = -2 at k = k2, there exists a periodic solution 
of period 2T(kz). 

(iv) According to the oscillation theorem (Magnus and Winkler 1966), the stability property 
of a solution changes when passing through a stability boundary. 
For our stabiIity equations for Sq, Hill's discriminant is defined by 

A@) = 6ql(T(k2)) + %(T(k2)) (16) 

where Sql(t) and Sqz(t) are solutions of these stability equations with the following initial 
conditions: Sql(0) = (dSqz/dt)(O) = 1 and S(dql/dt)(O) = Sqz(0) = 0. This discriminant 
has to be computed numerically and the results .are presented in the next section. 

Next, we consider the stability of the x = -y orbits, so now p(t) = 0 + Sp(t) and 
q( t )  = q(t) +Sq(r ) .  Applying the same linearization method, we tind 

d'Sp 
-++-1+2k2sn2(t ,k2))6p=~ 
dt2 

d'Sq 
- + ( l + 4 k 2 - 6 k 2 s n 2 ( t , k 2 ) ) S q  = O  
dt2 

(17) 

where k2 = (1 - Q)/2 .  
Comparison of these stability equations with those for the x = y orbits with Q < 1, 

namely (1 1). shows that they are identical if& and Sq are interchanged. However, there are 
two differences that are worth mentioning and are associated with the different definitions 
of k2. First, let us compare the x = y periodic orbits governed by (7). k2 = (1 + Q ) / 2 ,  
with the x = -y periodic orbits of (lo), k2 = (1 - Q)/2 .  The amplitudes of x = -y orbits 
become smaller when Q increases and they disappear at Q = 1. Next, let us compare the 
modulus of the Jacobi elliptic function. For the x = y orbits it linearly increases from 0.5 
to 1 when Q increases from 0 to 1, but for the x = -y orbits it linearly decreases from 0.5 
to 0. 
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4. Numerid results 

Some of orbits govemed by the expressions (7). (8) and (10) were numerically generated 
by using built-in elliptic functions in Mathematica. These sample orbits were compared to 
those generated by numerically integrating the equations of motion (2) with the x = y and 
x = - y  constraints. They were found to be in very good agreement. During the test, we 
selected two values of Q from both ranges, 0 < Q < 1 and Q > 1 for the x = y orbits 
and one value of Q from 0 < Q < 1 for the x = -y orbits. This agreement shows that 
the elliptic functions we generate numerically and which are to be used in the subsequent 
stability analysis will not introduce significant errors. 

Next, we computed Hill's discriminant to see its behaviour on a large scale from Q = - 1 
to Q = 10 and the results are shown in figure 2. 

Discriminant 

'i I U 
I ,  
I \eQ 

4 fi 8 10 

-5 U 

Figure 2. The broad features of  the variation of Hill's discriminant A(&2) shown as a function 
of Q. The horizontal lines at A = &2 separate the stable and unstable solutions. 'ihe U symbol 
denotes the unstable regions and the S symbol denotes the stable repion. 

The intersections of the discriminant curve. with the y = 1 2  lines indicate positions 
where stability transitions occur. According to the oscillation theorem, if one state of 
stability is known, then the rest are theoretically determined. Sohos ef al (1989) show that 
the x = y orbit for Q = 0 is unstable, and hence the solution of our stability equations will 
be stable if its discriminant is between -2 and 2, otherwise the solution will be unstable. 

Let us focus on each region separately. For the x = -y orbits, -1 < Q < 0, the result 
shows that the discriminant never passes the +2 horizontal line. Therefore, these orbits are 
always unstable. On the other hand, for the x = y orbits there exist a number of transitions. 
When 0 6 Q < 1, the results show a number of stability transitions and suggest that this 
number is infinite since the discriminant oscillates faster and faster as Q approaches to 1. 
Also, there~exists a recurrent structure as finer scale calculations are carried out. When 
Q > 1, it is found that the discriminant oscillates faster as Q decreases to 1, the same 
behaviour as for Q < 1 but in the other direction (see figure 3). Table 1 lists some of the 
values of Q where the discriminant cuts the f2 horizontal lines. These Q values will be 
called boundaries of stability. 
I A value of Q, namely Q = 0.6, for which the oscillation theorem predicts a stable 

solution was selected and the full dynamical equations, as given by (2). were numerically 
integrated. From these results a Poincari surface of section was constructed by finding the 
values of x and dx/dt at the time when the orbits pierce through the y = 0 plane. This is 
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I 
Q 11.99 11.992 0.994 0.996 :~ 0.998 
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4 
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. - Q  1.002 1.004 1.006 1.008 1.01 
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3. The fine scale variation of 
A(!?) with Q. 
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Table 1. The values of Q together wilh the corresponding values of the Hill's discriminant 
A(k(Q)'), very close to the various boundaries of stability as obtained numerically. 

Q A(k(Q)') Comments 

0.50637 +2.0000 1st boundary (stable) 
0.67340 -1.9997 2nd boundary (unstable) 
0,96424 -2,0000 3rd boundary (stable) 
0.981 67 +Z.OOOl 4th boundary (unstable) 
0.998 38 f1.9998 5th boundary (stable) 
1.00081 -2.0000 Sthboundary (stable) 
1.001 62 +Z.OOOO 4th boundary (unstable) 
1.019 14 +1.9977 3rd boundary (stable) 
1.03944 -1.9999 2nd boundary (unstable) 
1.63588 -2.OW1 1st boundary (stable) 

shown in figure 4 and, as expected, a series of stable islands around the x = y orbit are 
seen to exist. A point of interest is to study how these islands deform as the parameter 
Q is changed. First, as we move towards the first stability boundary by decreasing Q, the 
islands become more distorted and elongated. For values of Q less than the first boundary 
value (Q GZ 0.506) the islands break into two distinct families of stable islands. These two 
families of islands are not connected and thus, though we have a bifurcation, it is not period 
doubling. Around these stable islands, there is an expanding distorted figureof-eight-shaped 
stochastic sea (see figure 5). This behaviour is first noticeable at Q = 0.48. This stochastic 
sea becomes thicker as we decrease Q further and finally covers almost the whole of phase 
space at Q = 0. 

11.58 - - 
5 11.57- a 

0.56 - 

(1.55 - 
11.541- 4 

x 

Figure 4. The change in the form of the stable islands that exist as Q changes from 0.506 to 
0.673. The Poincare surface of section is the y = 0 plane. 
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03 I I 
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Importantly, these numerical simulations show the existence of yet another set of stable 
orbits which have bifurcated from the unstable x = y orbit. 

Next, we changed Q so as to move towards the second stability boundary, that is by 
increasing Q. The stable islands get smaller and smaller, finally disappearing at the second 
boundary Q sz 0.673 (see figure 4). For 0.673 < Q < 0.964, the orbits are unstable and 
the phase plane looks chaotic. 

As we move towards the third boundary at Q = 0.964, we find a stochastic sea 
surrounding two families of stable islands, and these two separate islands start to connect 
and at the same time the stochastic sea gets thinner and finally disappears at the boundary. 
This is qualitatively the same phenomenon that occurs as one approaches the first boundary 
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at Q m 0.506 from smaller values of Q. For Q values beyond the thud boundary, we simply 
have stable x = y solutions surrounded by stable islands until the value of Q reaches that at 
the fourth boundary. Hence, we assume that this phenomenon occurs at every odd boundary. 
Nevertheless, as the rate of oscillation of the discriminant increases, it becomes more and 
more difficult to obtain numerically the values of Q defining the boundaries. 

For Q z 1, we observe a similar behaviour as we decrease Q to 1. The stable islands 
around the x = y orbit split. However, these split islands are now connected and so we 
have a period doubling bifurcation. This is illustrated in figure 6. 

Finally, we consider the special case Q = 1. Because the period of the periodic 
coefficient of Hill’s equation becomes infinite, the discriminant becomes undefined and it 
is impossible to reach the point numerically; a special treatment is needed. We tried to 

- , ) ~ ,  , , , , Q=l,SSOo , , , , 

-I I 
I !as 1.1 1.15 1.2 1.7.5 1.3 1.3s 1.4 1.4s 

I 

Q11.63588 

5 

I 
I 1.1 I .2 1.3 1.4 1.5 1.b 

Figure 6. A period doubling bifurcation of the x = y periodic orbit at the first boundary of 
Q > I .  The Poincad surface of section is selected at the y = .\/p - x plane. 
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produce a Poincar6 surface of section but failed due to the build-up of the numerical errors. 
At Q = 1, the x = y orbit forms a separahix and its period is infinity. If a small variation is 
added to the initial conditions of this orbit, it will soon grow because the trajectory crosses 
the separatriw to the other side. This conclusion is confirmed by the fact that the trajectory is 
deformed significantly when we change the step of integration. If we focus on the stability 
equation for this case, we see that for large enough time the solution is approximately simple 
harmonic, because the coefficient (1 - 2sechz(t)) tends to 1 very quickly. As a result, we 
conclude that the n = y orbit for Q 1 is stable. 

K Jaroensutnsinee and G Rowlands 

5. Analytic treatment 

The numerical results discussed in the last section suggest that as Q + 1 the regions of 
stability become narrower and narrower and their number increase. Due to build-up of 
numerical error associated with the fact that the period of the orbits approach infinity as 
Q + 1, it becomes impossible to follow this break up of stable regions after the first few. 
Nevertheless, the complicated behaviour around Q = 1 can be understood analytically by 
making a suitable approximation to the periodic coefficients in the linear stability equations. 
The approximation is based on a representation of elliptic functions as infinite series of 
pulses (solitons). For example (l'oda 1981), 

where K is the complete elliptic integral of the first kind, E is the complete elliptic integral 
of the second kind, and K' is K(1- k2 = k"). 

For Q -+ 1, we have k2 + 1 and k" + 0. Using well known expansions for the 
elliptic integrals in the limit as kZ + 1 (see Byrd and Friedman 1954), the linear stability 
equations (11) and (12) for Sq both become, to lowest significant order 

1 - 2 sech2(t - 21L) 
+m 

!=-cc 

where L = l n ( 4 / m ) .  
The above stability equation immediately reminds one of a quantum problem where a 

plane wave propagates through a periodic potential which can, for large enough values of L, 
be thought of as an infinite number of isolated but equivalent 'valleys'. These valleys being 
periodically located at I = 21L. Therefore, Sq(t) behaves like a plane wave for a substantial 
range o f t ,  before it encounters a particular valley which is described by -2sechz(t). The 
solution to the stability problem can then be analysed in terms of a wave scattering through 
the potential valleys located at ZL on the t axis. 

Before a scattering we may write the solution in the form Sq( t )  = Aei' + Be-i' and 
after the scattering in the form Sq(t) = Ce" + De-", where A, B ,  C and D are complex 
constants. These constants are related to each other by the following equations 
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where IpI2 = R, the reflection coefficient, and l t I2  = T, the transmission coefficient. These 
coefficients are given in Morse and Feshbach (1953). 

By selecting initial conditions according to the definition of the discriminant, we can 
analytically compute this quantity and find 

(21) A(Q) =  PO cosOK(Q) - 0 )  

where 

so that po = Abs(p) = 2.938 763 and B = Arg(p) = 2.384 130. 

given by 
The values of Q at the stability boundaries A(Q) = Xi are then easily found and are 

[2(1 - 16exp{-B - (-1)" sin-'(C*) - (n - $)XI) - 11 for Q < 1 

f o r Q > l  
(22) 

(23) - l l  

2 
(1 - 16exp{-B - (-l)nsin-l(C*) - (n - 4 ) ~ ) )  

where C* is zkllpo for A = h2. 

Table 2. The Values of Q, as obtained using(22) and (23). together with the corresponding values 
of the Hill's discriminant A(k(Q)'). The.mlumn labelled 9i gives the percentage deviation of 
these values of Q from those obtained by the direct numerical solution of (11) and (12) for 
Sq(t) as given in table I. 

Q % A(Q) Comments 

0.13235836 -70.14 +2 1st boundary (stable) 
0.56613429 -15.84 -2 2nd boundary (unstable) 
0.96250581 -0.1801 -2 3rd boundary (stable) 
0.981 27689 -0.0398 f2 4th boundary (unstable) 
0.99837913 -2.7 x lo-' +2 5th boundary (stable) 
1.00080943 -6.0 x ID-' -2 5th boundary (stable) 
1,001 621 58 0.000 16 +2 4th boundary (unstable) 
1.01890004 -0.M36 f2 3rd boundary (stable) 
1.03821053 -0.1185 -2 2nd boundary (unstable) 
1.55308128 -5.1 -2 1st boundary (stable) 

The above approximate treatment is good for values of Q near unity. It gives agreement 
with the values of Q obtained numerically to within 6%, as given in table 1 except for the 
first and second boundaries for Q c 1 (see table 2). The increase in the rate of oscillation 
of the discriminant as we move towards Q = 1 is also described by (21) and it is readily 
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Figure 7. 
represent the discriminant computed 
by the numerical integration of the 
linear stability equations and CUNeS 
represent the discriminant generated 
by (21). As we move toward Q = 1. 
a better approximation is obtained. 
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seen that the system undergoes an infinite number of stability transitions. The method also 
gives agreement with the numerically generated values of the discriminant within this range 
of Q. In figure 7 the value of the discriminant & a function of Q is shown. The dots 
corresponding to the value calculated from a numerical solution of (11) and (12). Thus, 
this analysis complements the numerical treatment. 

In addition, it is found that the ratio of the amplitudes of the harmonic wave, before 
and after scattering through a valley, yields the map 

Thii map can be brought into the form of a tangent map 

&+I = 7 - 1/x. (25) 
where 7 = ((r2 - $)ezK +e-2K)/t. and X = e-'jK((rZ - p2) + p@)/r ,  and this equation 
can be solved exactly (see Rowlands 1990). Thus an analytic form for the solution Sq(t)  
can be obtained by this method. 

6. Conclusion 

We have studied the x = rty orbits for the (Q - xy)* potential and have generated the 
orbits analytically. Their stability, has been examined in detail. We are able to trace their 
stability as a function of Q by combining numerical and analytic methods. A very rich 
and intricate structure has been revealed, and, importantly, windows of stability liave been 
found. The full equations of motion, (Z), have been solved numerically for values of Q 
in the neighbourhood of these stable windows. In particular, the changes of structure in 
a Poincarb surface of section from closed orbits to chaotic ones has been revealed,. These 
changes are illustrated in figures 4 and 5 when the surface of section is selected at the y = 0 
plane. These same sections reveal the existence of further periodic orbits for values of Q 
for which the x = y orbits are unstable. 

For Q 2 1.636, only the x = y orbit exists and this is stable for all larger values of Q. 
The existence of such a stable periodic orbit is, intimately linked with the changes in the 
adiabatic invariant f i ,  since from both the analytic and numerical studies (CRF and Howard 
1971), it is known that the major change in f i  occurs in the median plane which is just the 
x = y orbit. This connection is under further study. 

Particles injected into the periodic orbits or the stable islands will of course remain in 
them indefinitely. It is expected that particles whose orbits pass near these periodic ones will 
tend to stay in their vicinity. Such attachment has been identified in studies of dynamical 
systems governed by maps (Yannacopoulos and Rowlands 1993, and references therein) 
and shown to reduce the effective diffusion of particles through phase space. A study of 
the effects of stable regions in what is otherwise a chaotic phase space is an important 
general problem. The model potential discussed in this paper particularly for Q < 1 has 
the desirable added feature of simplicity. Further study of the quantitative effects of such 
periodic orbits is underway. 
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